ISSN <u>2745-9918</u> dan telah terindeks <u>SINTA 5</u>. Vol 6 No 1 Tahun 2025

Karakterisasi Ekstrak, Formulasi dan Evaluasi Sediaan Hand Sanitizer Ekstrak Daun Sirih Merah (*Piper crocatum* L.)

Characterization of Extract, Formulation and Evaluation of Hand Sanitizer from Red Betel Leaf Extract (Piper crocatum L.)

Dyah Aryantini^{1*}, Faisal Akhmal Muslich², Pri Hardini¹, Atmira Sariwati³, Munifatul Lailiyah¹, Fita Sari¹, Rosa Juwita Hesturini¹

¹ Fakultas Farmasi, Institut Ilmu Kesehatan Bhakti Wiyata Kediri
² Fakultas Farmasi, Universitas Hang Tuah
³ Fakultas Kesehatan, Institut Ilmu Kesehatan Bhakti Wiyata Kediri

*dyah.aryantini@iik.ac.id

ABSTRAK

Kualitas bahan baku obat tradisional menjadi urgensi dalam pemanfaatan bahan alam dalam sediaan farmasi karena turut berkontribusi dalam memberikan efek farmakologi. Tanaman sirih merah merupakan salah satu sumber daya alam yang telah dieksplorasi untuk Kesehatan karena kontribusinya terhadap beragam aktivitas farmakologi. Penelitian ini bertujuan untuk memastikan mutu ekstrak daun sirih merah (ESM), membuat formula hand sanitizer (HS) dengan bahan aktif ESM serta melakukan evaluasi terhadap sediaan tersebut. Metode yang digunakan dalam penelitian ini adalah *eksperimental design* dengan metode simple random sampling untuk pengambilan sampel. Sampel uji diperoleh dari hasil ekstraksi maserasi daun sirih merah, ekstrak dikarakterisasi sesuai dengan prosedur dalam Farmakope Herbal Indonesia (FHI) dan Materia Medika Indonesia (MMI). Formulasi sediaan HS dan evaluasi mutu fisik dilakukan dengan prosedur yang sesuai untuk sediaan cair meliputi uji organoleptik, pH, daya sebar dan daya lekat. Hasil dari penelitian ini menunjukkan bahwa karakter spesifik, non spesifik ekstrak dan evaluasi mutu fisik hand sanitizer memenuhi persyaratan. Karakter ESM telah memenuhi standar mutu sehingga dapat digunakan sebagai bahan baku obat herbal terstandar untuk menjamin mutu, keamanan dan khasiat sediaan obat tradisional.

Kata kunci: evaluasi sediaan; hand sanitizer; sirih merah; standarisasi ekstrak

ABSTRACT

The quality of traditional medicine raw materials is urgent in the use of natural materials in pharmaceutical preparations because it contributes to providing pharmacological effects. The red betel plant is one of the natural resources that has been explored for health because of its contribution to various pharmacological activities. This study aims to ensure the quality of red betel leaf extract (ESM), create a hand sanitizer (HS) formula with ESM active ingredients and evaluate the preparation. The method used in this study is an experimental with simple random sampling

method for sampling. Test samples were obtained from the results of maceration extraction of red betel leaves, and characterized the extract is characterized according to the procedures in the Indonesian Herbal Pharmacopoeia (FHI) and Indonesian Materia Medika (MMI). The formulation of HS preparations and evaluation of physical quality are carried out with procedures appropriate for liquid preparations including organoleptic tests, pH, spreadability and adhesion. The results of this study indicate that the specific, non-specific characteristics of the extract and evaluation of the physical quality of the hand sanitizer meet the requirements. The character of ESM has met quality standards so that it can be used as a standardized herbal medicine raw material to ensure the quality, safety and efficacy of traditional medicine preparations.

Keywords: evaluation product; hand sanitizer; red betel; standardization of extract

PENDAHULUAN

Kesehatan dan kebersihan tangan merupakan pilar utama dalam pencegahan penyebaran penyakit infeksi. Mikroorganisme pathogen seperti bakteri, virus dan jamur dapat dengan mudah berpindah melalui kontak tangan dengan permukaan yang terkontaminasi atau dekat orang lain. Penyakit infeksi, mulai dari infeksi saluran pencernaan ringan hingga penyakit yang lebih serius menjadi beban Kesehatan Masyarakat global yang signifikan.

Salah satu cara praktis dan efektif untuk menjaga kebersihan tangan adalah melalui penggunaan hand sanitizer (HS). Hand sanitizer khususnya yang berbasis alkohol, telah terbukti mampu membunuh mikroorganisme secara cepat dan efisien. Kemudahan penggunaan dan portabilitas HS menjadikannya popular terutama dalam situasi akses air dan sabun terbatas (Sinanto&Djannah, 2020). Namun, penggunaan HS berbasis alkohol terus menerus dan penambahan bahan kimia dapat menimbulkan kekhawatiran seperti iritasi kulit, kekeringan dan potensi efek samping dari bahan kimia sintetis. Resistensi bakteri terhadap alkohol juga hal yang perlu dikhawatirkan, hal ini mendorong pencarian alternatif yang lebih aman dan berkelanjutan.

Hand sanitizer berbahan alami muncul sebagai solusi menjanjikan. Formulasi HS dengan bahan alami diharapkan dapat memberikan efektivitas antimikroba yang sebandig atau bahkan lebih baik dengan reisko efek samping lebih rendah (Kusdiyah et al., 2022). Penggunaan bahan alami juga mendukung tren global menuju produk ramah lingkungan dan berkelanjutan. Sumber daya alam yang terbarukan dan proses produksi yang lebih sedikit menghasilkan limbah menjadi daya Tarik sendiri bagi konsumen yang semakin peduli terhadap isu lingkungan. Pengembangan HS alami yang efektif, aman, bermutu diharapkan menjadi alternatif yang berkontribusi terhadap upaya pencegahan penyakit infeksi berkelanjutan.

Sirih merah adalah salah satu tanaman yang memiliki beragam manfaat untuk kesehatan seperti antimikroba, antijamur, antioksidan, antiinflamasi, antianalgetika, imunomodulator, anti alergi, antidiabetes, antitumor dan memberikan efek hipotensi (Siswina et al., 2023). Untuk menjamin mutu ekstrak sirih merah yang digunakan sebagai bahan aktif HS maupun sediaan farmasetik lainnya, perlu dilakukan standarisasi untuk

menjamin keajegan (keseragaman) mutu ekstrak baik dari parameter spesifik maupun non-spesifik. Penelitian ini bertujuan untuk menjamin mutu ESM sebagai bahan aktif HS serta mengevaluasi mutu fisik sediaan HS.

METODE PENELITIAN

1. Alat dan Bahan

a. Alat

Alat yang digunakan dalam penelitian ini adalah timbangan digital (Toledo), rotavapor (Buchi), orbital shaker, desikator, oven, mixer, pH meter, alat uji daya lekat dan daya sebar, krus porselen, chamber, pipa kapiler, glassware (Iwaki), waterbath dan tanur (Biobase).

b. Bahan

Bahan-bahan yang digunakan diantaranya, serbuk daun sirih merah, plat KLT (Merck), dan akuades. Pelarut organik dengan grade pro analisis (Smartlab) yakni, etanol 96%, n-Heksana p.a, etil asetat, kloroform, metanol H₂SO₄ dan HCl. Eksipien untuk formula HS (*pharmaceutical grade*-Bratachem) yang terdiri atas: Carbomer 940, TEA, propilen glikol, gliserin, nipagin.

2. Prosedur Penelitian

Penelitian ini merupakan penelitian dengan jenis desain ekperimental. Adapun teknik sampling yang digunakan adalah *simple random sampling* yakni dengan mengambil daun sirih merah yang tumbuh subur tanpa memilih jenis-jenis dengan kriteria khusus pada tanaman sirih merah. Etik penelitian dilakukan oleh komisi etik penelitian IIK Bhakti Wiyata Kediri (nomor 1022/FF/EP//2025).

a. Ekstraksi Daun Sirih Merah

Metode yang digunakan adalah metode maserasi dengan cara merendam 200 gram serbuk daun sirih merah dalam etanol 70% sebanyak 1: 10 (v/v) selama 3x24 jam. Filtrat yang diperoleh dipekatkan dan dengan rotavapor (Buchi) pada suhu 70°C dan diuapkan dari pelarutnya dengan *waterbath* hingga diperoleh ekstrak kental (Lailiyah, Saputra & Aryantini, 2024).

b. Standarisasi Ekstrak (Kepel dan Bodhi, 2020; Aryantini *et al.*, 2024) Standarisasi ekstrak dilakukan untuk memastikan kualitas ekstrak daun sirih merah sesuai dengan FHI edisi II (2017). Prosedur karakterisasi ekstrak dilakukan terhadap parameter spesifik dan non spesifik

b.1. Parameter Spesifik

b.1.1. Organoleptik

Melakukan uji secara organoleptik terhadap ekstrak yang meliputi bentuk, warna, bau dan rasa.

b.1.2. Kadar Sari Larut Air (KSLA) dan Etanol (KSLE)

Sejumlah 5 gram ekstrak direndam selama 24 jam dengan 100 ml airkloroform (dilarutkan dalam etanol untuk uji KSLE) menggunakan labu bersumbat sambil dikocok selama 6 jam pertama dan kemudian dibiarkan selama 18 jam, kemudian disaring. Uapkan 20 ml filtrat hingga kering. Residu dipanaskan pada suhu 105 °C hingga bobot tetap. Hitung kadar dalam persen senyawa yang larut dalam air terhadap berat ekstrak awal.

b.1.3. Kandungan Senyawa Kimia

Kandungan senyawa kimia dalam ESM diidentifikasi dengan metode skrining fitokimia dan Kromatografi Lapis Tipis (KLT). Skrining fitokimia terhadap sampel ESM dilakukan untuk mengidentifikasi senyawa metabolit sekunder seperti alkaloid, flavonoid, tanin dan saponin. Pola kromatogram ekstrak daun sirih ditetapkan dengan fase Gerak n-heksana:etil asetat (7:3 v/v). Kromatogram yang terbentuk dideteksi di bawah detektor lampu UV lamda 254 dan 366.

b.2. Parameter Non Spesifik

b.2.1. Kadar Air

Timbang dengan tepat ±1 gram ESM ke dalam cawan penguap yang telah ditimbang berat kosong sebelumnya. Masukkan cawan ke dalam oven bersuhu 105°C. Keringkan selama 5 jam, atau hingga berat konstan (berat tidak berubah setelah pengeringan lanjutan setiap 1 jam, penyimpangan tidak lebih dari 0,5 mg). Timbang ulang untuk mendapatkan berat akhir.

b.2.2. Kadar Abu Total

Timbang ±2 gram ESM ke dalam cawan yang telah ditimbang kosong sebelumnya. Pijarkan dalam tanur pada suhu 775-825°C. Bakar selama 4–6 jam sampai diperoleh residu berwarna abu-abu terang atau putih, menandakan pembakaran sempurna. Keluarkan cawan, dinginkan dalam eksikator selama ±30 menit, lalu timbang. Jika masih terdapat karbon hitam (tidak sempurna), ulangi pembakaran selama 30 menit dan timbang kembali hingga berat konstan tercapai.

c. Formulasi Hand Sanitizer (HS) Ekstrak Daun Sirih Merah

Pembuatan gel hand sanitizer dilakukan dalam dua variasi konsentrasi ESM 20 dan 24%. Formula dari sediaan gel HS disajikan dalam tabel 1 berdasarkan penelitian (Muna, Emelda & Hidayati, 2023) dengan sedikit modifikasi. Dalam beakerglass campurkan ekstrak yang telah ditimbang dengan gliserin dan propilenglikol hingga homogen. Timbang dan campurkan Carbomer 940 dengan TEA, aduk hingga homogen dan terbentuk masa gel. Campurkan kedua campuran tersebut, terakhir tambahkan nipagin dalam air panas dan aduk hingga homogen.

Tabel 1. Formula Hand Sanitizer Ekstrak Daun Sirih Merah

BAHAN	SAMPEL I	SAMPEL II
Ekstrak daun	10 g	12 g
Carbomer 940	0,3 g	0,3 g
TEA	0,2 ml	0,2 ml

BAHAN	SAMPEL I	SAMPEL II
Propilen glikol	3 ml	3 ml
Gliserin	3 ml	3 ml
Nipagin	0,02 g	0,02 g
Essence	Secukupnya	Secukupnya
Aquadest	ad 50 ml	ad 50 ml

d. Evaluasi Mutu Fisik Hand Sanitizer Sirih Merah (Ivana, Edy & Siampa, 2022)

d.1. Organoleptis

Evaluasi dilakukan dengan panca Indera yang meliputi bentuk, warna dan bau sediaan

d.2. Uji daya sebar

Uji daya sebar dilakukan dengan cara 0,5 gram sediaan di letakkan di atas kaca bagian atasnya di beri kaca yang sama, dan ditingkatkan bebannya, dan di beri rentang waktu 1 menit. Penyebaran diukur pada setiap penambahan beban, saat sediaan berhenti menyebar (dengan waktu tertentu secara teratur)

d.3. Uji daya lekat

Uji daya lekat dilakukan dengan cara meletakkan HS (secukupnya) diatas obyek glass yang telah ditentukan luasnya. Letakkan obyek glass yang lain diatas gel tersebut tekanlah dengan beban 1 kg selama 5 menit. Pasanglah obyek glass pada alat. Lepaskan beban seberat 100 g dan catat waktunya hingga kedua *object glass* terlepas

d.4. Uji pH

Lakukan kalibrasi pH meter menggunakan buffer yang sesuai. Celupkan elektroda pada sampel yang ada di dalam *beaker glass*. Catat nilai pH yang ditampilkan pH meter


3. Analisa Data

Analisa data dalam penelitian ini dilakukan dengan metode statistik deskriptif yang menggunakan data rata-rata dan standar deviasi (SD) terhadap data kuantitatif seperti KSLA, KSLE, susut pengeringan, kadar abu total dan evaluasi mutu fisik sediaan.

HASIL DAN PEMBAHASAN

Ekstrak kental yang dihasilkan dari prosedur maserasi adalah sebesar 34,29 gram dengan rendemen 17,15%b/b. Analisis fitokimia ESM terhadap senyawa yang terkandung didalamnya menunjukkan bahwa ESM positif mengandung senyawa alkaloid, flavonoid, tanin dan tidak teridentifikasi adanya saponin. Hal ini diperkuat dengan tidak terbentuknya busa yang stabil Berdasarkan hasil analisis KLT yang disajikan dalam gambar 1 menunjukkan bahwa terjadinya pemisahan yang baik dalam system yang digunakan. Detektor sinar UV menunjukkan adanya senyawa-senyawa yang meredam dan berpendar di daerah Rf 0,3. Pada Rf 0,5-0,7 memperlihatkan noda spot merah pada kromatogram

menunjukkan adanya senyawa yang menyerap UV 366 dan memancarkan cahaya merah setelah pencahayaan UV. Hal ini dapat mengindikasikan adanya klorofil atau senyawa lain yang memiliki sifat serupa (Anam, 2015).

Gambar 1. Profil kromatogram ESM dalam fase Gerak n-heksana:etil asetat (7:3 v/v)

Hasil karakterisasi ESM dibandingkan terhadap standar yang tercantum dalam FHI maupun penelitian terdahulu (Najmudin, Lukmayani & Yuliawati, 2023), hasilnya ditampilkan dalam tabel 2. Karakteristik ESM yang ditetapkan memberikan hasil sesuai dengan standar yang dipersyaratkan. Secara organoleptis karakter ESM menunjukkan warna yang lebih gelap dibandingkan syarat dalam FHI, hal ini mungkin terjadi karena proses penguapan pelarut di atas waterbath yang terlalu lama sehingga banyak senyawa yang teroksidasi. Sari yang terlarut di dalam air menunjukkan kadar yang lebih tinggi dibandingkan dalam etanol, hal ini menunjukkan bahwa senyawa kadar senyawa yang sangat polar lebih tinggi dari senyawa lainnya. Parameter kadar air memenuhi syarat (8,86%) menunjukkan sisa kadar air setelah proses pengeringan untuk memastikan tidak adanya pertumbuhan bakteri, jamur, dan mikroorganisme lain yang merugikan, sehingga dapat menurunkan keamanan dan stabilitas ekstrak (Wahyuningsih, Sumaryono & Chaidir, 2021). Adapun kadar abu total ESM memenuhi syarat (3,96%) memberikan makna sisa mineral anorganik yang tersisa setelah proses pengabuan yang bertujuan memastikan kemurnian ekstrak dari kontaminan (Utami et al., 2017).

Tabel 2. Hasil karakterisasi ekstrak daun sirih merah (ESM) berdasarkan parameter spesifik dan non spesifik terhadap standar

No	Variabel	Karakteristik	Standar
1.	Organoleptis	Kental, hijau	Kental, warna coklat
		kehitaman, khas	kemerahan, bau khas
		sirih, pahit	dan rasa pahit
2.	KSLA	35,60±0,99%	≥13,9%
3.	KSLE	$26,50\pm0,73\%$	≥8,8%
4.	Kadar Air	$8,86\pm1,03\%$	≤ 10 %
5.	Kadar Abu Total	3,96±0,11%	≤5,9%

Ket: * (standar)(Depkes RI, 2017; Najmudin, Lukmayani & Yuliawati, 2023)

Hasil evaluasi mutu fisik terhadap kedua formula sediaan gel Hand Sanitizer Ekstrak Daun Sirih disajikan dalam tabel 3. Semua parameter yang diuji memenuhi persyaratan berdasarkan Pustaka dan penelitian terdahulu. Berdasarkan hasil evaluasi dari gel secara organoleptis menunjukkan bahwa kedua formula memiliki ciri fisik seperti gel pada umumnya. Uji daya sebar dilakukan untuk mengetahui kemampuan penyebaran sediaan saat diaplikasikan, daya sebar yang baik adalah 5-7 cm. Baik formula 1 maupun 2 memenuhi persyaratan tersebut (6,16 dan 7,03). Semakin luas permukaan gel yang kontak dengan kulit maka obat akan terdistribusi dengan baik di tempat terapi (Sumule, Kuncahyo and Leviana, 2020). Daya lekat gel mempengaruhi penghantaran obat, semakin lama kulit kontak dengan sediaan maka efek terapi yang dihasilkan optimal. Uji daya lekat yang baik adalah lebih dari 1 detik (Ivana, Edy & Siampa, 2022). Kedua formula memenuhi syarat tersebut (1,42 dan 1,55). Hasil uji pH dari formula I dan II memenuhi persyaratan pH untuk sediaan topikal yaitu bersifat asam dalam rentang 4,5-6,5 (5,2 dan 6,0) yang sesuai dengan pH kulit. Sediaan yang bersifat asam akan menyebabkan iritasi pada kulit, sedangkan bila terlalu basa akan menyebabkan kulit kering (Djarot, Diana & Indriati, 2020). Kedua konsentrasi ESM dalam sediaan gel memenuhi persyaratan mutu sediaan gel, sehingga baik konsentrasi 20 maupun 24% dapat digunakan sebagai gel hand sanitizer

Tabel 3. Hasil evaluasi mutu fisik sediaan HS

No	Parameter	Formula I	Formula II
1	Organoleptis	Coklat, aroma khas, waktu pengeringan <1 menit, tidak lengket	Coklat, aroma khas, waktu pengeringan <1 menit, tidak lengket
2	Daya sebar	6,16±0,88 cm	7,03±0,59 cm
3	Daya lekat	1,42±0,06 detik	1,55±0,12 detik
4	рН	5,2±0,23	6,0±0,77

KESIMPULAN

Ekstrak daun sirih merah memenuhi persyaratan mutu ekstrak sebagai bahan baku obat tradisional maupun kosmetik yang meliputi parameter spesifik dan non spesifik. Sediaan hand sanitizer dengan bahan aktif daun sirih merah pada konsentrasi 20 dan 24% memenuhi persyaratan mutu sediaan gel.

UCAPAN TERIMAKASIH

Ucapan terima kasih disampaikan penulis kepada Yayasan Bhakti Wiyata dan Institut Ilmu Kesehatan Bhakti Wiyata Kediri atas dukungan fasilitas berupa sarana dan prasarana laboratorium.

DAFTAR PUSTAKA

Anam, K. (2015) Isolasi Senyawa Triterpenoid dari Alga Merah (Eucheuma cottoni) Menggunakan Kromatografi Lapis Tipis (KLT) dan Analisisnya Menggunakan Spektrofotometer UV-Vis dan FTIR, Fakultas Sains dan Teknologi.

Aryantini, D. et al. (2024) Aktivitas Penghambatan Lipase Pankreas In Vitro dan

- Standarisasi Ekstrak Bangle (*Zingiber Cassumunar* ROXB .), 49(2), pp. 70–75. Depkes RI (2017) *Farmakope Herbal Edisi II*, *Kementrian Kesehatan Republik Indonesia*. doi: 10.2307/jj.2430657.12.
- Djarot, P., Diana, I. & Indriati, D. (2020) Formulasi Dan Uji Anti Bakteri Sediaan Gel Ekstrak Daun Mangga Arumanis (*Mangifera Indica* L.) Sebagai Anti Bakteri *Staphylococcus Aureus* dan *Propionibacterium acnes*, *FITOFARMAKA: Jurnal Ilmiah Farmasi*, 10(1), pp. 84–96. doi: 10.33751/jf.v10i1.2072.
- Ivana, N. R., Edy, H. J. & Siampa, J. P. (2022) Formulation And Antioxidant Effectivity Test Gel Extract Of Mulberry Leaf (*Morus alba* L.) Dpph Method Formulasi Dan Uji Efektivitas Antioksidan Gel Ekstrak Daun Murbei (*Morus alba* L.) Menggunakan Metode Dpph, *Pharmacon*, 11(4), pp. 1671–1678.
- Kepel, B. J. & Bodhi, W. (2020) Standarisasi Parameter Spesifik dan Non-Spesifik Ekstrak Rimpang Lengkuas Merah (*Alpinia purpurata* K . Schum) sebagai Obat Antibakteri, 8(1), pp. 63–67.
- Kusdiyah, E. *et al.* (2022) Efektifitas Antimikroba Hand Sanitizer Berbahan Dasar Alami *Piper Betle* L. dan *Aloe vera*, *Jurnal Kesehatan Masyarakat Indonesia*, 17(September), p. 48. Available at: https://jurnal.unimus.ac.id/index.php/jkmi.
- Lailiyah, M., Saputra, S. A. & Aryantini, D. (2024) Uji Aktifitas Antioksidan, flavonoid Total dan Formulasi Sediaan Krim Ekstrak Bangle (*Zingiber cassumunar*), 4(3), pp. 396–406. doi: 10.37311/ijpe.v4i3.28181.
- Muna, L. N., Emelda & Hidayati, D. N. (2023) Formulasi dan Uji Sifat Fisik Sediaan Gel Ekstrak Etanol Kulit Lemon Berbasis Karbomer 940, *LUMBUNG FARMASI ; Jurnal Ilmu Kefarmasian*, 4(1), p. 94.
- Najmudin, G. A., Lukmayani, Y. & Yuliawati, K. M. (2023) Penetapan Kadar Flavonoid Ekstrak Etanol Daun Sirih Merah (Piper Ornatum N.E.Br.), *Bandung Conference Series: Pharmacy*, pp. 250–257. doi: 10.29313/bcsp.v3i2.8614.
- Sinanto, R. A. & Djannah, S. N. (2020) Efektivitas Cuci Tangan Menggunakan Sabun Sebagai Upaya Pencegahan Infeksi: Tinjauan Literatur, *Jurnal Kesehatan Karya Husada*, 8(2), pp. 19–33. doi: 10.36577/jkkh.v8i2.403.
- Siswina, T. *et al.* (2023) Antifungal Constituents of Piper crocatum and Their Activities as Ergosterol Biosynthesis Inhibitors Discovered via In Silico Study Using ADMET and Drug-Likeness Analysis, *Molecules*, 28(23). doi: 10.3390/molecules28237705.
- Sumule, A., Kuncahyo, I. & Leviana, F. (2020) Optimasi Carbopol 940 dan Gliserin dalam Formula Gel Lendir Bekicot (Achatina fulica Ferr) sebagai Antibakteri Staphylococcus aureus dengan Metode Simplex Lattice Design, PHARMACY: Jurnal Farmasi Indonesia (Pharmaceutical Journal of Indonesia), 17(1), p. 108. doi: 10.30595/pharmacy.v17i1.5640.
- Utami, Y. P. et al. (2017) Standardisasi Simplisia dan Ekstrak Etanol Daun Leilem clerodendrum, Journal of Pharmaceutical and Medicinal Sciences, 2(1), pp. 32–39.
- Wahyuningsih, E. S., Sumaryono, W. and Chaidir (2021) Aktivitas Kombinasi Ekstrak Daun Kelor (*Moringa oleifera* L) dan Ekstrak Daun Sirih Merah (*Piper crocatum*) Sebagai Anti Jerawat, *Journal of Pharmacopolium*, 4(3), pp. 123–129.